Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative metabolomics implicates threitol as a fungal signal supporting colonization of Armillaria luteobubalina on eucalypt roots.

Identifieur interne : 000042 ( Main/Exploration ); précédent : 000041; suivant : 000043

Comparative metabolomics implicates threitol as a fungal signal supporting colonization of Armillaria luteobubalina on eucalypt roots.

Auteurs : Johanna W-H Wong [Australie] ; Krista L. Plett [Australie] ; Siria H A. Natera [Australie] ; Ute Roessner [Australie] ; Ian C. Anderson [Australie] ; Jonathan M. Plett [Australie]

Source :

RBID : pubmed:31797388

Abstract

Armillaria root rot is a fungal disease that affects a wide range of trees and crops around the world. Despite being a widespread disease, little is known about the plant molecular responses towards the pathogenic fungi at the early phase of their interaction. With recent research highlighting the vital roles of metabolites in plant root-microbe interactions, we sought to explore the presymbiotic metabolite responses of Eucalyptus grandis seedlings towards Armillaria luteobuablina, a necrotrophic pathogen native to Australia. Using a metabolite profiling approach, we have identified threitol as one of the key metabolite responses in E. grandis root tips specific to A. luteobubalina that were not induced by three other species of soil-borne microbes of different lifestyle strategies (a mutualist, a commensalist, and a hemi-biotrophic pathogen). Using isotope labelling, threitol detected in the Armillaria-treated root tips was found to be largely derived from the fungal pathogen. Exogenous application of d-threitol promoted microbial colonization of E. grandis and triggered hormonal responses in root cells. Together, our results support a role of threitol as an important metabolite signal during eucalypt-Armillaria interaction prior to infection thus advancing our mechanistic understanding on the earliest stage of Armillaria disease development. Comparative metabolomics of eucalypt roots interacting with a range of fungal lifestyles identified threitol enrichment as a specific characteristic of Armillaria pathogenesis. Our findings suggest that threitol acts as one of the earliest fungal signals promoting Armillaria colonization of roots.

DOI: 10.1111/pce.13672
PubMed: 31797388


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative metabolomics implicates threitol as a fungal signal supporting colonization of Armillaria luteobubalina on eucalypt roots.</title>
<author>
<name sortKey="Wong, Johanna W H" sort="Wong, Johanna W H" uniqKey="Wong J" first="Johanna W-H" last="Wong">Johanna W-H Wong</name>
<affiliation wicri:level="3">
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Plett, Krista L" sort="Plett, Krista L" uniqKey="Plett K" first="Krista L" last="Plett">Krista L. Plett</name>
<affiliation wicri:level="3">
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Natera, Siria H A" sort="Natera, Siria H A" uniqKey="Natera S" first="Siria H A" last="Natera">Siria H A. Natera</name>
<affiliation wicri:level="4">
<nlm:affiliation>Metabolomics Australia, The University of Melbourne, Parkville, Melbourne, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Metabolomics Australia, The University of Melbourne, Parkville, Melbourne</wicri:regionArea>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
<orgName type="university">Université de Melbourne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Roessner, Ute" sort="Roessner, Ute" uniqKey="Roessner U" first="Ute" last="Roessner">Ute Roessner</name>
<affiliation wicri:level="4">
<nlm:affiliation>Metabolomics Australia, The University of Melbourne, Parkville, Melbourne, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Metabolomics Australia, The University of Melbourne, Parkville, Melbourne</wicri:regionArea>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
<orgName type="university">Université de Melbourne</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>School of BioSciences, The University of Melbourne, Parkville, Melbourne, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of BioSciences, The University of Melbourne, Parkville, Melbourne</wicri:regionArea>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
<orgName type="university">Université de Melbourne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Anderson, Ian C" sort="Anderson, Ian C" uniqKey="Anderson I" first="Ian C" last="Anderson">Ian C. Anderson</name>
<affiliation wicri:level="3">
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Plett, Jonathan M" sort="Plett, Jonathan M" uniqKey="Plett J" first="Jonathan M" last="Plett">Jonathan M. Plett</name>
<affiliation wicri:level="3">
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31797388</idno>
<idno type="pmid">31797388</idno>
<idno type="doi">10.1111/pce.13672</idno>
<idno type="wicri:Area/Main/Corpus">000048</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000048</idno>
<idno type="wicri:Area/Main/Curation">000048</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000048</idno>
<idno type="wicri:Area/Main/Exploration">000048</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative metabolomics implicates threitol as a fungal signal supporting colonization of Armillaria luteobubalina on eucalypt roots.</title>
<author>
<name sortKey="Wong, Johanna W H" sort="Wong, Johanna W H" uniqKey="Wong J" first="Johanna W-H" last="Wong">Johanna W-H Wong</name>
<affiliation wicri:level="3">
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Plett, Krista L" sort="Plett, Krista L" uniqKey="Plett K" first="Krista L" last="Plett">Krista L. Plett</name>
<affiliation wicri:level="3">
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Natera, Siria H A" sort="Natera, Siria H A" uniqKey="Natera S" first="Siria H A" last="Natera">Siria H A. Natera</name>
<affiliation wicri:level="4">
<nlm:affiliation>Metabolomics Australia, The University of Melbourne, Parkville, Melbourne, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Metabolomics Australia, The University of Melbourne, Parkville, Melbourne</wicri:regionArea>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
<orgName type="university">Université de Melbourne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Roessner, Ute" sort="Roessner, Ute" uniqKey="Roessner U" first="Ute" last="Roessner">Ute Roessner</name>
<affiliation wicri:level="4">
<nlm:affiliation>Metabolomics Australia, The University of Melbourne, Parkville, Melbourne, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Metabolomics Australia, The University of Melbourne, Parkville, Melbourne</wicri:regionArea>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
<orgName type="university">Université de Melbourne</orgName>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>School of BioSciences, The University of Melbourne, Parkville, Melbourne, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of BioSciences, The University of Melbourne, Parkville, Melbourne</wicri:regionArea>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
<orgName type="university">Université de Melbourne</orgName>
</affiliation>
</author>
<author>
<name sortKey="Anderson, Ian C" sort="Anderson, Ian C" uniqKey="Anderson I" first="Ian C" last="Anderson">Ian C. Anderson</name>
<affiliation wicri:level="3">
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Plett, Jonathan M" sort="Plett, Jonathan M" uniqKey="Plett J" first="Jonathan M" last="Plett">Jonathan M. Plett</name>
<affiliation wicri:level="3">
<nlm:affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Sydney, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Sydney</wicri:regionArea>
<placeName>
<settlement type="city">Sydney</settlement>
<region type="état">Nouvelle-Galles du Sud</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant, cell & environment</title>
<idno type="eISSN">1365-3040</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Armillaria root rot is a fungal disease that affects a wide range of trees and crops around the world. Despite being a widespread disease, little is known about the plant molecular responses towards the pathogenic fungi at the early phase of their interaction. With recent research highlighting the vital roles of metabolites in plant root-microbe interactions, we sought to explore the presymbiotic metabolite responses of Eucalyptus grandis seedlings towards Armillaria luteobuablina, a necrotrophic pathogen native to Australia. Using a metabolite profiling approach, we have identified threitol as one of the key metabolite responses in E. grandis root tips specific to A. luteobubalina that were not induced by three other species of soil-borne microbes of different lifestyle strategies (a mutualist, a commensalist, and a hemi-biotrophic pathogen). Using isotope labelling, threitol detected in the Armillaria-treated root tips was found to be largely derived from the fungal pathogen. Exogenous application of d-threitol promoted microbial colonization of E. grandis and triggered hormonal responses in root cells. Together, our results support a role of threitol as an important metabolite signal during eucalypt-Armillaria interaction prior to infection thus advancing our mechanistic understanding on the earliest stage of Armillaria disease development. Comparative metabolomics of eucalypt roots interacting with a range of fungal lifestyles identified threitol enrichment as a specific characteristic of Armillaria pathogenesis. Our findings suggest that threitol acts as one of the earliest fungal signals promoting Armillaria colonization of roots.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31797388</PMID>
<DateRevised>
<Year>2020</Year>
<Month>04</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-3040</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>43</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>Plant, cell & environment</Title>
<ISOAbbreviation>Plant Cell Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative metabolomics implicates threitol as a fungal signal supporting colonization of Armillaria luteobubalina on eucalypt roots.</ArticleTitle>
<Pagination>
<MedlinePgn>374-386</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/pce.13672</ELocationID>
<Abstract>
<AbstractText>Armillaria root rot is a fungal disease that affects a wide range of trees and crops around the world. Despite being a widespread disease, little is known about the plant molecular responses towards the pathogenic fungi at the early phase of their interaction. With recent research highlighting the vital roles of metabolites in plant root-microbe interactions, we sought to explore the presymbiotic metabolite responses of Eucalyptus grandis seedlings towards Armillaria luteobuablina, a necrotrophic pathogen native to Australia. Using a metabolite profiling approach, we have identified threitol as one of the key metabolite responses in E. grandis root tips specific to A. luteobubalina that were not induced by three other species of soil-borne microbes of different lifestyle strategies (a mutualist, a commensalist, and a hemi-biotrophic pathogen). Using isotope labelling, threitol detected in the Armillaria-treated root tips was found to be largely derived from the fungal pathogen. Exogenous application of d-threitol promoted microbial colonization of E. grandis and triggered hormonal responses in root cells. Together, our results support a role of threitol as an important metabolite signal during eucalypt-Armillaria interaction prior to infection thus advancing our mechanistic understanding on the earliest stage of Armillaria disease development. Comparative metabolomics of eucalypt roots interacting with a range of fungal lifestyles identified threitol enrichment as a specific characteristic of Armillaria pathogenesis. Our findings suggest that threitol acts as one of the earliest fungal signals promoting Armillaria colonization of roots.</AbstractText>
<CopyrightInformation>© 2019 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wong</LastName>
<ForeName>Johanna W-H</ForeName>
<Initials>JW</Initials>
<Identifier Source="ORCID">0000-0001-6119-8645</Identifier>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Plett</LastName>
<ForeName>Krista L</ForeName>
<Initials>KL</Initials>
<Identifier Source="ORCID">0000-0001-6422-3754</Identifier>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Natera</LastName>
<ForeName>Siria H A</ForeName>
<Initials>SHA</Initials>
<AffiliationInfo>
<Affiliation>Metabolomics Australia, The University of Melbourne, Parkville, Melbourne, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Roessner</LastName>
<ForeName>Ute</ForeName>
<Initials>U</Initials>
<Identifier Source="ORCID">0000-0002-6482-2615</Identifier>
<AffiliationInfo>
<Affiliation>Metabolomics Australia, The University of Melbourne, Parkville, Melbourne, Australia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of BioSciences, The University of Melbourne, Parkville, Melbourne, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Anderson</LastName>
<ForeName>Ian C</ForeName>
<Initials>IC</Initials>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Plett</LastName>
<ForeName>Jonathan M</ForeName>
<Initials>JM</Initials>
<Identifier Source="ORCID">0000-0003-0514-8146</Identifier>
<AffiliationInfo>
<Affiliation>Hawkesbury Institute for the Environment, Western Sydney University, Richmond, Sydney, Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>12</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Cell Environ</MedlineTA>
<NlmUniqueID>9309004</NlmUniqueID>
<ISSNLinking>0140-7791</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">GC-MS</Keyword>
<Keyword MajorTopicYN="Y">biomarkers</Keyword>
<Keyword MajorTopicYN="Y">disease detection</Keyword>
<Keyword MajorTopicYN="Y">fungal tree pathogen</Keyword>
<Keyword MajorTopicYN="Y">metabolomics</Keyword>
<Keyword MajorTopicYN="Y">plant-microbial interaction</Keyword>
<Keyword MajorTopicYN="Y">rhizosphere</Keyword>
<Keyword MajorTopicYN="Y">soil microbes</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>10</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31797388</ArticleId>
<ArticleId IdType="doi">10.1111/pce.13672</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Akiyama, K., Matsuzaki, K., & Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature, 435(7043, 824-827. https://doi.org/10.1038/nature03608</Citation>
</Reference>
<Reference>
<Citation>Baumgartner, K., Coetzee, M. P. A., & Hoffmeister, D. (2011). Secrets of the subterranean pathosystem of Armillaria. Molecular Plant Pathology, 12, 515-534. https://doi.org/10.1111/j.1364-3703.2010.00693.x</Citation>
</Reference>
<Reference>
<Citation>Beguiristain, T., & Lapeyrie, F. (1997). Host plant stimulates hypaphorine accumulation in Pisolithus tinctorius hyphae during ectomycorrhizal infection while excreted fungal hypaphorine controls root hair development. New Phytologist, 136, 525-532.</Citation>
</Reference>
<Reference>
<Citation>Birkinshaw, J. H., Stickings, C. E., & Tessier, P. (1948). Biochemistry of the wood-rotting fungi: 5. The production of d-threitol (l-erythritol) by Armillaria mellea (Vahl) Quélet. Biochemical Journal, 42, 329-332. https://doi.org/10.1042/bj0420329</Citation>
</Reference>
<Reference>
<Citation>Buee, M., Rossignol, M., Jauneau, A., Ranjeva, R., & Bécard, G. (2000). The Pre-Symbiotic Growth of Arbuscular Mycorrhizal Fungi Is Induced by a Branching Factor Partially Purified from Plant Root Exudates. Molecular Plant-Microbe Interactions, 13(6, 693-698. https://doi.org/10.1094/mpmi.2000.13.6.693</Citation>
</Reference>
<Reference>
<Citation>Burgess, T., & Wingfield, M. J. (2004). Impact of fungal pathogens in natural forest ecosystems: A focus on eucalypts. In K. Sivasithamparama, K. W. Dixon, & R. L. Barrett (Eds.), Microorganisms in plant conservation and biodiversity (pp. 285-306). Dordrecht: Kluwer Academic Publishers.</Citation>
</Reference>
<Reference>
<Citation>Chanclud, E., & Morel, J.-B. (2016). Plant hormones: A fungal point of view. Molecular Plant Pathology, 17, 1289-1297. https://doi.org/10.1111/mpp.12393</Citation>
</Reference>
<Reference>
<Citation>Collins, C., Keane, T. T. M., Turner, D. J., O'Keeffe, G., Fitzpatrick, D. A., & Doyle, S. (2013). Genomic and proteomic dissection of the ubiquitous plant pathogen, Armillaria mellea: Toward a new infection model system. Journal of Proteome Research, 12, 2552-2570. https://doi.org/10.1021/pr301131t</Citation>
</Reference>
<Reference>
<Citation>Dias, D. A., Hill, C. B., Jayasinghe, N. S., Atieno, J., Sutton, T., & Roessner, U. (2015). Quantitative profiling of polar primary metabolites of two chickpea cultivars with contrasting responses to salinity. Journal of Chromatography B, 1000, 1-13. https://doi.org/10.1016/j.jchromb.2015.07.002</Citation>
</Reference>
<Reference>
<Citation>Fernandez, O., Béthencourt, L., Quero, A., Sangwan, R. S., & Clément, C. (2010). Trehalose and plant stress responses: Friend or foe? Trends in Plant Science, 15, 409-417. https://doi.org/10.1016/j.tplants.2010.04.004</Citation>
</Reference>
<Reference>
<Citation>Fernandez, O., Urrutia, M., Bernillon, S., Giauffret, C., Tardieu, F., Le Gouis, J., … Gibon, Y. (2016). Fortune telling: Metabolic markers of plant performance. Metabolomics, 12, 158. https://doi.org/10.1007/s11306-016-1099-1</Citation>
</Reference>
<Reference>
<Citation>Guo, J., McCulley, R. L., & McNear, D. H. J. (2015). Tall fescue cultivar and fungal endophyte combinations influence plant growth and root exudate composition. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00183</Citation>
</Reference>
<Reference>
<Citation>Hacham, Y., Matityahu, I., & Amir, R. (2017). Transgenic tobacco plants having a higher level of methionine are more sensitive to oxidative stress. Physiologia Plantarum, 160, 242-252. https://doi.org/10.1111/ppl.12557</Citation>
</Reference>
<Reference>
<Citation>Huang, H., Carter, M. S., Vetting, M. W., Al-Obaidi, N., Patskovsky, Y., Almo, S. C., & Gerlt, J. A. (2015). A general strategy for the discovery of metabolic pathways: d-Threitol, l-threitol, and erythritol utilization in Mycobacterium smegmatis. Journal of the American Chemical Society, 137, 14570-14573. https://doi.org/10.1021/jacs.5b08968</Citation>
</Reference>
<Reference>
<Citation>Isidorov, V. A., Lech, P., Żółciak, A., Rusak, M., & Szczepaniak, L. (2008). Gas chromatographic-mass spectrometric investigation of metabolites from the needles and roots of pine seedlings at early stages of pathogenic fungi Armillaria ostoyae attack. Trees, 22, 531-542. https://doi.org/10.1007/s00468-008-0213-z</Citation>
</Reference>
<Reference>
<Citation>Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Makarova, N., & Lugtenberg, B. (2006). Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Molecular Plant-Microbe Interactions, 19, 1121-1126. https://doi.org/10.1094/MPMI-19-1121</Citation>
</Reference>
<Reference>
<Citation>Kile, G. A. (1981). Armillaria luteobubalina a primary cause of decline and death of trees in mixed species eucalypt forests in central Victoria. Australian Forest Research, 11, 63-77.</Citation>
</Reference>
<Reference>
<Citation>Kile, G. A. (2000). Woody root rots of eucalypts. In P. J. Kean, G. A. Kile, F. D. Podger, & B. N. Brown (Eds.), Diseases and pathogens of eucalypts (pp. 293-306). Australia: CSIRO publishing.</Citation>
</Reference>
<Reference>
<Citation>Lahrmann, U., Ding, Y., Banhara, A., Rath, M., Hajirezaei, M. R., Döhlemann, S., … Zuccaro, A. (2013). Host-related metabolic cues affect colonization strategies of a root endophyte. Proceedings of the National Academy of Sciences, 110, 13965-13970. https://doi.org/10.1073/pnas.1301653110</Citation>
</Reference>
<Reference>
<Citation>Martins, S. C. V., Araújo, W. L., Tohge, T., Fernie, A. R., & DaMatta, F. M. (2014). In high-light-acclimated coffee plants the metabolic machinery is adjusted to avoid oxidative stress rather than to benefit from extra light enhancement in photosynthetic yield. PLoS ONE, 9, e94862. https://doi.org/10.1371/journal.pone.0094862</Citation>
</Reference>
<Reference>
<Citation>McComb, E. A., & Rendig, V. V. (1963). Isolation and identification of L-threitol from plants fed L-sorbose. Archives of Biochemistry and Biophysics, 103, 84-86. https://doi.org/10.1016/0003-9861(63)90012-2</Citation>
</Reference>
<Reference>
<Citation>Müller, A., Faubert, P., Hagen, M., zu Castell, W., Polle, A., Schnitzler, J.-P., & Rosenkranz, M. (2013). Volatile profiles of fungi-Chemotyping of species and ecological functions. Fungal Genetics and Biology, 54, 25-33. https://doi.org/10.1016/j.fgb.2013.02.005</Citation>
</Reference>
<Reference>
<Citation>Nagana Gowda, G. A., & Raftery, D. (2013). Biomarker discovery and translation in metabolomics. Current Metabolomics, 1, 227-240. https://doi.org/10.2174/2213235X113019990005</Citation>
</Reference>
<Reference>
<Citation>Nanchen, A., Fuhrer, T., & Sauer, U. (2007). Determination of metabolic flux ratios from 13C-experiments and gas chromatography-mass spectrometry data: Protocol and principles. Methods in Molecular Biology (Clifton, N.J.), 358, 177-197. https://doi.org/10.1007/978-1-59745-244-1_11</Citation>
</Reference>
<Reference>
<Citation>Nusaibah, S. A., Siti Nor Akmar, A., Idris, A. S., Sariah, M., & Mohamad, P. Z. (2016). Involvement of metabolites in early defense mechanism of oil palm (Elaeis guineensis Jacq.) against Ganoderma disease. Plant Physiology and Biochemistry, 109, 156-165. https://doi.org/10.1016/j.plaphy.2016.09.014</Citation>
</Reference>
<Reference>
<Citation>Patel, T. K., & Williamson, J. D. (2016). Mannitol in plants, fungi, and plant-fungal interactions. Trends in Plant Science, 21, 486-497. https://doi.org/10.1016/j.tplants.2016.01.006</Citation>
</Reference>
<Reference>
<Citation>Poezevara, G., Lozano, S., Cuissart, B., Bureau, R., Bureau, P., Croixmarie, V., … Lepailleur, A. (2017). A computational selection of metabolite biomarkers using emerging pattern mining: A case study in human hepatocellular carcinoma. Journal of Proteome Research, 16, 2240-2249. https://doi.org/10.1021/acs.jproteome.7b00054</Citation>
</Reference>
<Reference>
<Citation>Robinson, R. M. (2003). Short-term impact of thinning and fertilizer application on Armillaria root disease in regrowth karri (Eucalyptus diversicolor F. Muell.) in Western Australia. Forest Ecology and Management, 176, 417-426.</Citation>
</Reference>
<Reference>
<Citation>Roessner, U., Luedemann, A., Brust, D., Fiehn, O., Linke, T., Willmitzer, L., & Fernie, A. R. (2001). Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. The Plant Cell, 13, 11-29. https://doi.org/10.1105/tpc.13.1.11</Citation>
</Reference>
<Reference>
<Citation>Ross-Davis, A. L., Stewart, J. E., Hanna, J. W., Kim, M.-S., Knaus, B. J., Cronn, R., … Klopfenstein, N. B. (2013). Transcriptome of an Armillaria root disease pathogen reveals candidate genes involved in host substrate utilization at the host-pathogen interface. Forest Pathology, 43, 468-477. https://doi.org/10.1111/efp.12056</Citation>
</Reference>
<Reference>
<Citation>Sade, D., Shriki, O., Cuadros-Inostroza, A., Tohge, T., Semel, Y., Haviv, Y., … Brotman, Y. (2014). Comparative metabolomics and transcriptomics of plant response to Tomato yellow leaf curl virus. Metabolomics, 11, 81-97.</Citation>
</Reference>
<Reference>
<Citation>Sankaran, S., Mishra, A., Ehsani, R., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72, 1-13.</Citation>
</Reference>
<Reference>
<Citation>Sarnowska, E., Gratkowska, D. M., Sacharowski, S. P., Cwiek, P., Tohge, T., Fernie, A. R., … Sarnowski, T. J. (2016). The role of SWI/SNF chromatin remodeling complexes in hormone crosstalk. Trends in Plant Science, 21, 594-608. https://doi.org/10.1016/j.tplants.2016.01.017</Citation>
</Reference>
<Reference>
<Citation>Scalbert, A., Brennan, L., Fiehn, O., Hankemeier, T., Kristal, B. S., van Ommen, B., … Wopereis, S. (2009). Mass-spectrometry-based metabolomics: Limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics, 5, 435-458. https://doi.org/10.1007/s11306-009-0168-0</Citation>
</Reference>
<Reference>
<Citation>Sherif, M., Becker, E.-M., Herrfurth, C., Feussner, I., Karlovsky, P., & Splivallo, R. (2016). Volatiles emitted from maize ears simultaneously infected with two Fusarium species, mirror the most competitive fungal pathogen. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01460</Citation>
</Reference>
<Reference>
<Citation>Shiokawa, Y., Date, Y., & Kikuchi, J. (2018). Application of kernel principal component analysis and computational machine learning to exploration of metabolites strongly associated with diet. Scientific Reports, 8, 3426. https://doi.org/10.1038/s41598-018-20121-w</Citation>
</Reference>
<Reference>
<Citation>Steinkellner, S., Lendzemo, V., Langer, I., Schweiger, P., Khaosaad, T., Toussaint, J.-P., & Vierheilig, H. (2007). Flavonoids and Strigolactones in Root Exudates as Signals in Symbiotic and Pathogenic Plant-Fungus Interactions. Molecules, 12(7), 1290-1306. https://doi.org/10.3390/12071290</Citation>
</Reference>
<Reference>
<Citation>Sturrock, R. N., Frankel, S. J., Brown, A. V., Hennon, P. E., Kliejunas, J. T., Lewis, K. J., … Woods, A. J. (2011). Climate change and forest diseases. Plant Pathology, 60, 133-149. https://doi.org/10.1111/j.1365-3059.2010.02406.x</Citation>
</Reference>
<Reference>
<Citation>Stuttmann, J., Hubberten, H.-M., Rietz, S., Kaur, J., Muskett, P., Guerois, R., … Parker, J. E. (2011). Perturbation of arabidopsis amino acid metabolism causes incompatibility with the adapted biotrophic pathogen Hyaloperonospora arabidopsidis. The Plant Cell, 23, 2788-2803. https://doi.org/10.1105/tpc.111.087684</Citation>
</Reference>
<Reference>
<Citation>Tschaplinski, T. J., Plett, J. M., Engle, N. L., Deveau, A., Cushman, K. C., Martin, M. Z., … Martin, F. (2014). Populus trichocarpa and Populus deltoides exhibit different metabolomic responses to colonization by the symbiotic fungus Laccaria bicolor. Molecular Plant-Microbe Interactions, 27, 546-556. https://doi.org/10.1094/MPMI-09-13-0286-R</Citation>
</Reference>
<Reference>
<Citation>Vinaixa, M., Schymanski, E. L., Neumann, S., Navarro, M., Salek, R. M., & Yanes, O. (2016). Mass spectral databases for LC/MS- and GC/MS-based metabolomics: State of the field and future prospects. TrAC Trends in Analytical Chemistry, 78, 23-35. https://doi.org/10.1016/j.trac.2015.09.005</Citation>
</Reference>
<Reference>
<Citation>Wong, J. W.-H., Lutz, A., Natera, S., Wang, M., Ng, V., Grigoriev, I. V., … Plett, J. M. (2019). The influence of contrasting microbial lifestyles on the pre-symbiotic metabolite responses of Eucalyptus grandis roots. Frontiers in Ecology and Evolution, 7, 10. https://doi.org/10.3389/fevo.2019.00010</Citation>
</Reference>
<Reference>
<Citation>Xu, X. H., Wang, C., Li, S. X., Su, Z. Z., Zhou, H. N., Mao, L. J., … Kubicek, C. P. (2015). Friend or foe: differential responses of rice to invasion by mutualistic or pathogenic fungi revealed by RNAseq and metabolite profiling. Scientific Reports, 5, 13624.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
</country>
<region>
<li>Nouvelle-Galles du Sud</li>
<li>Victoria (État)</li>
</region>
<settlement>
<li>Melbourne</li>
<li>Sydney</li>
</settlement>
<orgName>
<li>Université de Melbourne</li>
</orgName>
</list>
<tree>
<country name="Australie">
<region name="Nouvelle-Galles du Sud">
<name sortKey="Wong, Johanna W H" sort="Wong, Johanna W H" uniqKey="Wong J" first="Johanna W-H" last="Wong">Johanna W-H Wong</name>
</region>
<name sortKey="Anderson, Ian C" sort="Anderson, Ian C" uniqKey="Anderson I" first="Ian C" last="Anderson">Ian C. Anderson</name>
<name sortKey="Natera, Siria H A" sort="Natera, Siria H A" uniqKey="Natera S" first="Siria H A" last="Natera">Siria H A. Natera</name>
<name sortKey="Plett, Jonathan M" sort="Plett, Jonathan M" uniqKey="Plett J" first="Jonathan M" last="Plett">Jonathan M. Plett</name>
<name sortKey="Plett, Krista L" sort="Plett, Krista L" uniqKey="Plett K" first="Krista L" last="Plett">Krista L. Plett</name>
<name sortKey="Roessner, Ute" sort="Roessner, Ute" uniqKey="Roessner U" first="Ute" last="Roessner">Ute Roessner</name>
<name sortKey="Roessner, Ute" sort="Roessner, Ute" uniqKey="Roessner U" first="Ute" last="Roessner">Ute Roessner</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000042 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000042 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31797388
   |texte=   Comparative metabolomics implicates threitol as a fungal signal supporting colonization of Armillaria luteobubalina on eucalypt roots.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31797388" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020